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Abstract: The aim of this research is to compare the accuracy of predictive models using Aerosol Optical Depth (AOD) 

for the cities of Delhi and Lucknow. We applied both Long Short-Term Memory (LSTM) and Auto Regressive 

Integrated Moving Average (ARIMA) models for AOD prediction for January 2023 using past 10 years data (i.e., 01-

01-2013 to 01-01-2023) in both locations in order to accurately analyse their performances. It is observed that ARIMA 

model (in both cases) performs better than LSTM model and have better accuracy in predicting. The ARIMA models 

exhibited lower Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) values (i.e., Lucknow - MSE: 

0.01843, RMSE: 0.1357; Delhi - MSE: 0.03672, RMSE: 0.1916) along with lower Mean Absolute Percentage Error 

(MAPE) values (i.e., Lucknow - 18.9975%; Delhi - 20.80004%). Furthermore, the ARIMA models showed higher R-

Square values (i.e., R2: Delhi - 0.5994, Lucknow - 0.7335;) compared to the LSTM models (i.e., R2: Lucknow - 0.5452, 

Delhi - 0.5590). The study gives valuable insights into the spatial variability of AOD and underscores the significance 

of employing ARIMA models for time series prediction in regions characterized by distinct AOD patterns. To evaluate 

air quality as well as mitigate environmental effects, it is essential to comprehend these aerosol patterns. 

Keywords: Aerosol optical depth; LSTM; ARIMA; Lucknow; Delhi. 

       1. Introduction: 

Aerosols, often referred to as particulate matter, originate from both human activities and natural sources. They are 

known to have detrimental impacts on both atmospheric contamination and human welfare (Al-Kindi et al., 2020, 

Burnett et al., 2018). Elevated stages of air pollutants, like aerosols, are related with various health problems, including 

lung cancer, respiratory diseases, and heart issues (Russell et al., 2009, Davidson et al., 2005). Furthermore, atmospheric 

aerosols can affect our Earth's heat balance (Srivastava et al., 2022, Haywood et al., 2000). 

AOD is a measure of how much solar radiation is absorbed or scattered by aerosols throughout the entire atmospheric 

column, providing insights into aerosol concentrations. There are two primary approaches to measuring AOD namely 

satellite-based and ground-oriented remote detection. In comparison to satellite measurements, ground-oriented 

methods offer simplicity and fairly higher accuracy [Wu et al., 2015, Lin et al., 2013]. AOD serves as a crucial optical 

property parameter for characterizing aerosol optical characteristics. It holds particular significance due to its high 

precision in measurement and the wide range of observational methods available [Xue et al., 2017].  

Over the last twenty years, many research projects have looked at how aerosols are spread, what they look like, and 

how they move in specific areas of South of Asia, especially in the Indo-Gangetic Plain (IGP). These studies have used 

a combination of computer simulations and actual data collection (M. G. Lawrence et al.,2010, M. A. Bollasina et 

al.,2011, V.S.Nair et al.,2012, V.Vinoj et al.,2014, Shi et al., 2016, Shahid et al.,2020).  

Several models have been settled on the basis of satellite results for the evaluation of AOD. Though, the models are 

influenced by the quality of AOD product recoveries and uncertainties associated with other factors (Shunlin Liang et 

al.,2006; F. Melin et al.,2007; Ling Gao et al.,2016; E.Sun et al.,2019). Improved accuracy in AOD retrieval has been 

achieved through new artificial intelligence (AI) methods. Artificial neural network (ANN) models have been 

constructed to recover AOD at both global and regional gauges (A. Ali et al.,2013; Wenmin Qin et al.,2018). 

Additionally, for long sequential time series of Moderate Resolution Imaging Spectroradiometer (MODIS), integrating 
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Support Vector Machine (SVM) and ANN yielded poor AOD estimates compared to MODIS AOD products (Bethania 

Lanzaco et al.,2017).  

To address the extensive issue of air pollution, it's essential to create effective and practical prediction models. Numerous 

studies have explored air quality prediction, and various researchers have proposed different methods. These diverse 

approaches collectively enhance the accuracy of predicting air quality (Jun Luo et.al 2023). The LSTM algorithm was 

first introduced in (Sepp Hochreiter et al.,1997). It has demonstrated successful results in various fields, particularly in 

handling sequential time problems, like rainfall and overflow simulations (Frederik Kratzert et al.,2018; Caihong Hu et 

al.,2018; Hanlin Yin et al.,2021), stock prediction (D. M. Nelson et al.,2017), language modelling (Y. Li et al.,2018), 

machine translations (I. Sutskever et al.,2014), and speech understanding (A. Graves et al.,2013). Based on the 

previously mentioned research, the LSTM approach is highly recommended for addressing time sequential problems. 

In recent times, and especially over the last few decades, weather forecasting models have seen extensive use in research 

by numerous scientists. Among these models, the ARIMA model have emerged as one utmost fit for understanding 

climatic variables, such as precipitation and temperature. These models have been found to be effective and reliable in 

capturing the patterns and variations in these important climate factors (Tripti Dimri et al.,2020). 

Despite extensive research on air quality patterns using different network models, there is a absence of complete studies 

comparing performance of models like LSTM and ARIMA. To address this gap, this study will analyze AOD levels in 

Lucknow and Delhi cities over a 10-year period. The data used for this research is obtained from NASA's Giovanni 

platform, specifically from the MODIS Terra satellite. 

Moreover, this investigation will employ LSTM and ARIMA network models to foresee future AOD levels for both 

cities. By linking the presentation of these models, the study intent to ascertain the most suitable forecasting method for 

AOD in Lucknow and Delhi. 

        2. Data and Methods: 

2.1 Description and meteorology of the site 

This research is based upon two urban cities, Lucknow and Delhi, both situated in the Uttar Pradesh state of India and 

experiencing a steppe climate. The study focuses to examine the difference of predictive capability of LSTM and 

ARIMA modelling techniques by using AOD values of these highly developed places. Both cities experience extreme 

weather conditions, with very hot summers reaching up to 45°C and cold winters where temperatures can drop as low 

as 3°C. 

More about selected area is discussed below: 

2.1.1 Lucknow 

Lucknow is located in the central IGP in north of India at a latitude about 26.84°N and longitude about 80.94 °E. Its 

elevation is approximately 128 meters above mean sea level. It is situated along the picturesque banks of the Gomti 

River. Identified for its rich artistic legacy and historic importance, the metropolitan is shelter to a significant population 

density (about 40 lakhs according to World Population Review based on latest revised UN World Urbanization Prospects 

). City spans an area of 349 square kilometres with its increasing population, there are about 8,100 people living in 

every square kilometre. However, Lucknow faces environmental issues, particularly concerning air and water pollution, 

due to its high population and rapid urbanization (i.e., Ring roads and metro construction). 

This growth, combined with an approximately 10% rise in the number of vehicles on the road each year, has resulted in 

a significant increase in registered motor vehicles. According to data from the Regional Transport Office (RTO), the 

number of registered vehicles went up from 11 lakhs in 2010 to 24 lakhs in 2017. 

When examining the factors responsible for overall air pollution in Lucknow, it becomes evident that the main culprits 

are vehicle emissions and the dust stirred up from roads by vehicles and ongoing metro construction. 

2.1.2 Delhi 

Delhi is set in the north-western part of the IGP at a latitude about 28.39°N and longitude about 77.09°E, have an 

elevation around 215 meters above mean of sea level. It is a densely populated city with approximately 1.7 crores people 

based upon Census of 2011. It extents to an area of about 1500 km². Delhi is enclosed by the Himalayan mountains in 

the north, the flatlands of centre part of India to the south, and the Thar Desert in the west-southwest. In the nearby 

areas of Delhi, you can find many small and medium-sized factories, and they add to the pollution. Also, Delhi has 

around 71 lakhs registered vehicles, and these are the main reasons for the contaminated air in the region. 

The special geographical features of the IGP, with the Himalayan mountains to the north, trap various aerosols in the 

area. This situation worsens air pollution in both cities. 
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Fig.1 Area location map of Lucknow and Delhi cities within India. 

 

2.2 Data collection 

In our study, we collected AOD statistics at 1-degree daily resolution from January 1, 2013, to January 1, 2023, for both 

cities. We obtained this data from NASA's MODIS Terra platform, specifically using the dataset known as MODIS-

Terra MYD08_D3 v6.1. We retrieved the data from NASA's GIOVANNI website. 

MODIS, is an imperative tool on NASA's Terra and Aqua satellites. Both of these spacecrafts were sent out in 1999 and 

2002, respectively. MODIS helps us gather extensive data about the Earth's atmosphere, land, and oceans, which is 

crucial for Earth research. 

One remarkable feature of MODIS is its ability to provide data at different levels of detail, ranging from 250 meters to 

1 kilometre, depending on the type of information needed. This wide range allows scientists to study various aspects of 

our planet with great accuracy. 

What's even better is that MODIS data is available to the public and can be accessed through various platforms, like 

NASA's EOSDIS. This open accessibility promotes transparency and encourages scientists from around the world to 

use this valuable information for a wide range of research and applications. 

 

2.3 Methodology 

2.3.1 LSTM  

As mentioned earlier, the LSTM algorithm was first introduced in (Sepp Hochreiter et al.,1997) and this algorithm is 

based upon Recurrent Neural Network (RNN) (Rumelhart et al. 1986). 

The diagram below illustrates four neural network layers represented by green boxes, point-wise operators denoted by 

white circles, input shown in blue circles, and the cell state represented by yellow circles. An LSTM module consists of 

a cubicle (cell) state and 3 gates, granting it the ability to learn selectively, unlearn, or hold info from individual unit.  

The cell state facilitates the movement of information from the components while limiting alterations, allowing only a 

few linear interactions. 
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Fig.2. LSTM network flow diagram. 

 

 

An individual LSTM unit comprises 3 gates namely an input gate that retains available info, an output gate that regains 

the output, and a forget gate that discards or ignores historical data by using the sigmoid function. The input gate 

regulates the movement of information into the present cell state by utilizing a point-wise duplication procedure 

involving 'sigmoid' and 'tanh'. Subsequently, the output gate determines which data should be transmitted to the 

following concealed state. (Eltahan et al.2020). 

2.3.2 ARIMA 

The standard abbreviation for a non-seasonal ARIMA model is ARIMA (p, d, q), where p denotes the lag order, d the 

order of differencing, and q the order of the moving average. A seasonal ARIMA model, on the other hand, is denoted 

by the notation ARIMA (p, d, q) (P, D, Q) m, where m is the number of periods in each season. For the seasonal 

component of the ARIMA model, the letters P, D, and Q stand for the respective moving average (MA), differencing 

(I), and autoregressive (AR) factors. (Tripti Dimri et al.,2020). All the three models together make ARIMA model. 

Although ARIMA procedure has restrictions as it relies on past values, it can work well for extended and unchanging 

time series data. However, it only approximates historical trends rather than offering an explanation of the core data 

mechanism (Balibey and Serpil 2015; Bari et al. 2015; Yoosef Doost et al. 2017). Since, the data is stationary, a non-

seasonal ARIMA model has been used. We performed the time series analysis as described in the flow chart below: 
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Fig.3. Flow chart of time series analysis using LSTM and ARIMA network models. 

 

Initially, we checked for missing values in AOD data and found many by inspection so we carried out forward and 

backward interpolation to fill those missing values. Usually, the missing values are dropped in python but since data 

had so many missing values, so interpolation method was chosen for better results. After that the data is converted in 

time series format to carry out our analysis.  

To check whether the AOD data is stationary we did visual inspection and also ADF (Augmented Dickey-Fuller) test 

which is an arithmetical method used to govern the stationarity of a time series data, examining whether it possesses a 
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unit root (non-stationary) or not, and is conducted to identify trends and patterns in the data for time series analysis. We 

have used python for ADF test to determine the stationarity of the data. 

After that the data was broken into test and train data in 4:1. Firstly, we have used a LSTM neuronal network model for 

time series estimating and trained it to get prediction done using python, it also gave the plots between actual vs 

predicted data for both the cities and the forecasted AOD values for next month. The LSTM architecture is compatible 

for catching long-standing dependence and outlines in chronological data like time series. Here's a description of the 

model: 

(a) Model Architecture: 

The model contains numerous layers, individually serving a definite purpose. 

The first LSTM layer has 512 memory units, and it processes the input data while maintaining the sequence of time 

steps (`return sequences=True`). It learns patterns and dependencies across the time steps in the input data. 

After the first LSTM layer, a dropout layer is added to prevent overfitting. 20% of the neurons are randomly neutralised 

via dropout during training, which lessens the model's reliance on any one neuron and enhances generalisation. The 

second LSTM layer has 256 memory units and also processes the input with the same sequence retention 

(`return_sequences=True`). 

Another dropout layer is included after the second LSTM layer to further regularize the model. 

The third LSTM layer has 128 memory units. Unlike the previous layers, it only returns the last output, as 

`return_sequences` is not specified here. This layer helps capture higher-level temporal patterns in the data. 

A dropout layer is applied again after the third LSTM layer to enhance the model's robustness against overfitting. 

Two fully allied (dense) layers are included at the end of the model. The first dense layer contains 64 units and helps 

the model learn more abstract representations of the data. The second dense layer has only one unit and serves as the 

output layer, predicting the next value in the time series. 

(b) Model Compilation: 

The model is prepared for training using the `compile()` method. 

The Mean Squared Error (MSE) loss function is chosen as it is appropriate for regression tasks like time series 

forecasting. The model aims to minimalize the difference amongst its calculations and the authentic target values. 

The RMSprop optimizer is employed to optimize the model's weights during training. It adjusts with the learning 

frequency founded on the magnitude of recent gradients. 

The learning frequency is established to 0.001, which governs the step size for weight updates throughout training. 

(c) Model Training: 

The model is accomplished on the provided time series data by means of the `fit()` method. 

The training statistics, consisting of arrangements of entered features (`X_train`), and the equivalent target values 

(`Y_train`) are fed into the model during training. 

The training process is repeated for 150 epochs, meaning the model goes through the entire training dataset 150 times. 

This allows the model to learn from the data in multiple passes, refining its ability to make accurate predictions. 

To update the model's weights after processing a small batch of data, a batch size of 10 is used. This efficient training 

technique helps speed up the training process while maintaining accurate learning updates. 

In summary, the model is a deep LSTM neural network designed to arrest composite temporal patterns in time series 

data. It is trained to minimize the mean squared error and make accurate predictions for future values in the time series. 

Similarly ARIMA model autoarima() is used in R- studio which itself chooses the best fit values for p,d and q was used 

to get the same plots. The monthly AOD values are used here instead of daily. The performance of both LSTM and 

ARIMA models is checked with respect to MSE, RMSE, MAPE & R-square values and finally the comparison between 

LSTM and ARIMA model is made on the same. 

The provided code uses the ARIMA model for time series forecasting. Here's a concise explanation of the code: 

http://www.jetir.org/
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(a) `model <- auto.arima(ts_data)`: The code fits ARIMA model to `ts_data` time series by means of the `auto.arima()` 

function, which itself chooses the finest ARIMA model founded on certain criteria, and the resulting model is stored in 

the variable `model`. 

(b) `forecast_data <- forecast(model, h = 30)`: The code generates forecasts for the future 30 time periods using the 

`forecast()` function with the previously fitted ARIMA model (`model`). The forecasted data is stored in the variable 

`forecast_data`. 

(c)`best_model <- auto.arima(train_data)`: The code finds the finest ARIMA model for  `train_data` time series using 

the `auto.arima()` function. The selected model is stored in the variable `best_model`. 

(d)`forecast_data <- forecast(best_model, h = length(test_data))`: The code generates forecasts for the same time period 

as the actual data using the previously identified best ARIMA model (`best_model`). The number of future time periods 

to forecast is set to the length of the test data. The projected data is stored in the variable `forecast_data`. 

In summary, the code uses the `auto.arima()` function to find the best ARIMA model for the provided time series data. 

It then generates forecasts for future time periods using this model and also forecasts for the same time period as the 

actual data. The ARIMA model is useful for making predictions in time series analysis. 

3.Results and discussion 

3.1 ADF Test: Since we have used python for ADF test to determine the stationarity of the data for both the cities, we 

got following values: 

Table. 1: P-values and significance level found applying ADF-test. 

SI No.  Location P values Significance level 

1.  Lucknow 2.5741e-12 

 

0.05 

2.  Delhi 1.6443e-13 0.05 

 

          

o First p-value: 1.644355158430538e-13 (approximately 1.64 x 10⁻¹³ or 0.000000000000164). 

o Second p-value: 2.5741638537063304e-12 (approximately 2.57 x 10⁻¹² or 0.00000000000257). 

Both p-values are extremely small, indicating strong evidence against the null hypothesis of non-stationarity. The null 

hypothesis may be rejected because both p-values are significantly below the usual significance level of 0.05, which 

allows us to draw the conclusion that the data is stationary. It's great that we obtained consistent results from the ADF 

test in both cases, confirming the stationarity of the time series data. This suggests that the data exhibits stable statistical 

properties over time, making it suitable for time series analysis and forecasting. 

 

        3.2 Time series analysis: 

Firstly, the plot between predicted and actual values of AOD using LSTM network model is shown in which a 

comparison can be seen in from 01-01-2022 to 01-01-2023 for the both the cities (i.e., Lucknow at left and Delhi at 

right hand side). 
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Fig.4. Predicted vs actual AOD values diagram for Lucknow (left) and Delhi (right) city using python. 

 

Similarly, after that the plot future forecasted values using same LSTM model for next month (i.e., Jan 2023) is shown 

for both the cities. 

 

 

Fig.5. Predicted (forecasted) AOD values diagram for Lucknow (left) and Delhi (right) cities for January 2023 using 

LSTM model 

 

In January 2023, using an LSTM model, we forecasted the Aerosol Optical Depth (AOD) for Delhi and Lucknow cities 

on a daily basis. The predicted AOD values for Delhi extended from 0.610 to 0.672, while for Lucknow, the AOD values 

were greater, ranging from 1.543 to 1.927. 

Delhi generally experienced lower AOD values compared to Lucknow throughout the month, indicating that Delhi had 

relatively cleaner air with fewer aerosols in the troposphere. On the other hand, Lucknow had higher AOD values, 

suggesting higher concentrations of aerosols, which can lead to reduced visibility and potential health impacts, 

especially for individuals with respiratory conditions. 
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Similarly, the plot between predicted and actual values of AOD using ARIMA model on R-studio is shown in which a 

comparison can be seen in from 2022 to 2023 for the both the cities (i.e Delhi on left and Lucknow at right hand side).  

 

Fig.6. Predicted vs actual AOD values diagram for Lucknow 

(left) and Delhi (right) city using R-studio. 

 

After that the plot future forecasted values using same ARIMA model for next month (i.e Jan 2023) is shown for both 

the cities. 

 

 

Fig.7. Predicted (forecasted) AOD values diagram for Lucknow (left) and Delhi (right) cities for January 2023 using 

ARIMA model. 

 

In January 2023, using the ARIMA model, Lucknow's forecasted Aerosol Optical Depth (AOD) exhibited a consistent 

pattern with a gradual increase over the month. The AOD standards fluctuated from 0.550 to 0.766. This gradual increase 

in AOD indicates an upward trend in aerosol concentrations in Lucknow's atmosphere, which can be associated with 

worsening air quality and reduced visibility. 

On the other hand, Delhi's AOD values ranged from 0.839 to 0.771 and showed fluctuations during the month. While 

Delhi experienced varying AOD levels, the overall trend appeared to be a decrease in aerosol concentrations from 

greater values at the opening of the month to lower values towards the end of January. This trend may suggest potential 

improvement in air quality and visibility over the course of the month. 

Both cities should closely monitor AOD levels as they provide valuable information about air contamination and its 

potential influence on human well-being and the environment. It is vital to implement required air quality management 

measures in order to solve the difficulties presented by aerosol concentrations while also guaranteeing a healthy living 

environment for their population. 
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3.3 Models comparison: 

 
Table. 2: Errors and R2 standards for LSTM and ARIMA models: 

 

SI No. Location Model name MSE RMSE MAPE (%) R-Square 

1. Lucknow LSTM 0.1412 

 

0.3758 

 

54.0076 

 

0.5452 

 

2. Lucknow ARIMA 0.01843 0.1357 18.9975 0.7335 

3. Delhi LSTM 0.06161 

 

0.2482 

 

26.1785 

 

0.5590 

 

4. Delhi ARIMA 0.03672 0.1916 20.80004  0.5994 

 

 

     The assessment of the LSTM and ARIMA models employed for both cities is given in Table 2 using MSE, RMSE, 

MAPE, and R-Square values.  

      In this investigation, we calculated how well the LSTM and ARIMA models performed at predicting data from two 

separate locations, Lucknow and Delhi. The assessment was based on the MSE, Root RMSE, MAPE, and R-Square 

(R2) metrics. 

      In Delhi, both the LSTM and ARIMA models displayed reasonable predictive capabilities. In terms of MSE, RMSE, 

and MAPE, the ARIMA model outperformed the LSTM model. The ARIMA model produced more accurate predictions 

with fewer mistakes thanks to reduced MSE and RMSE values. The ARIMA model also displayed a lower MAPE 

indicating that its forecasts were more accurate. The ARIMA model's R-Square value was also greater, indicating a 

better fit of the model to the statistics and more variance being clarified. 

The Lucknow dataset indicated comparable tendencies. On the basis of MSE, RMSE, and MAPE, the ARIMA model 

outperformed the LSTM model suggestively. The ARIMA's lower MSE and RMSE figures demonstrated its capacity 

to generate more accurate forecasts with fewer errors. Additionally, the ARIMA model showed a lower MAPE, which 

demonstrated its capacity to produce predictions that were more in line with the actual data. Additionally, the ARIMA 

model's greater R-Square value demonstrated a better fit to the data, implying that it captured more volatility in the 

target variable. 

Overall, according to the evaluation measures, both in Lucknow and Delhi, the ARIMA models outperformed the LSTM 

models in terms of predictive performance. 

 

4.Conclusions: 

Both the LSTM and ARIMA models for predictive modelling were assessed for data prediction in Delhi and Lucknow. 

In terms of MSE, RMSE, MAPE, and R-Square for both sites, the ARIMA models outperformed the LSTM models, 

demonstrating superior prediction accuracy and model fit. For these particular time series prediction tasks, the ARIMA 

models might be thought of as being more appropriate. However, it's vital to know that the success of a model also rest 

on the explicit characteristics of the dataset and the nature of the problem being addressed. These results emphasize the 

potential usefulness of ARIMA models for time series prediction tasks in these locations. This could help to conduct 

further analysis and experimentation to explore other modelling approaches and enhance predictive accuracy in these 

regions. 
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